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Abstract. The recently proposed l2-norm based collaborative representation for
classification (CRC) model has shown inspiring performance on face recognition
after the success of its predecessor — the l1-norm based sparse representation
for classification (SRC) model. Though CRC is much faster than SRC as it has a
closed-form solution, it may have the same weakness as SRC, i.e., relying on a
“good” (properly controlled) training dataset for serving as its dictionary. Such a
weakness limits the usage of CRC in real applications because the quality require-
ment is not easy to verify in practice. Inspired by the encouraging progress on
dictionary learning for sparse representation, which can much alleviate this prob-
lem, we propose the discriminative collaborative representation (DCR) model. It
has a novel classification model well fitting its discriminative learning model. As
a result, DCR has the same advantage of being efficient as CRC, while at the same
time showing even stronger discriminative power than existing dictionary learn-
ing methods. Extensive experiments on nine widely used benchmark datasets for
both controlled and uncontrolled classification tasks demonstrate its consistent
effectiveness and efficiency.

1 Introduction

Sparse representation based classification (SRC) [1] has recently attracted a lot of atten-
tion due to its simplicity and striking performance on some visual classification tasks
especially face recognition. While most followers have focused on exploring new ap-
plications or designing new dictionary learning models to further improve its perfor-
mance on those exemplary recognition tasks, there are also a few papers on exposing
the intrinsic reasons for its effectiveness or even expressing different opinions. Among
these voices, there is a distinctive argument: it is the collaborative representation of the
test sample using all the training samples that truly results in SRC’s success but not
its l1-norm based sparsity [2]. To prove that, a new model named collaborative repre-
sentation based classification (CRC) has been proposed which uses the l2-norm based
regularization to replace the l1-norm based sparsity term. Primary experiments on face
recognition have shown that CRC performs no worse than SRC. However, considering
that SRC requires a controlled training set with sufficient samples per class for ensur-
ing a good performance [3], it is likely that CRC may need similar pre-conditions since
both of them directly use the training data as the reconstruction dictionary.



2 Yang Wu, Wei Li, Masayuki Mukunoki, Michihiko Minoh, and Shihong Lao

To alleviate the dependence on the quality of training data, great efforts have been
put into dictionary learning (DL) models [4] [5] [6] for enhancing SRC. They generally
aim at learning a dictionary and/or classification model for better exploring the discrim-
inative ability of the training data. Existing DL approaches are very diverse in model
design and optimization, resulting in different performances and speeds. As far as we
are aware, these approaches are all proposed for sparse representation, and the l0-norm
or l1-norm based sparsity usually leads to a high computational cost. Since the efficient
l2-norm based collaborative representation has already shown some of its discrimina-
tive power, it is interesting and valuable to see whether DL can also be explored to
further improve its performance while at the same time keep being efficient. This study
is planned for presenting the first attempt in this direction.

More concretely, we propose a novel dictionary learning model called discrimina-
tive collaborative representation (DCR), which has stronger discriminative power than
state-of-the-art DL models while at the same time utilizes the efficient l2-norm to reg-
ularize the representation coefficients. In addition to that, a novel classification model
directly derived from the learning model is adopted. We will show that DCR learns
faster and performs better than its competitors on various classification tasks.

2 Related work

Dictionary learning has recently become an active research topic. Though it has been
used for many applications, we are focusing on classification tasks.

As its name shows, dictionary learning approaches usually directly target at learn-
ing a discriminative dictionary. A representative work is the meta-face learning ap-
proach [7] which learns class-specific sub-dictionaries independently. Later on, the
DLSI model [8] was proposed to improve the discrimination ability of the sub-dictionaries
and also explore their shared common bases via exploring the incoherence between the
sub-dictionaries. Very recently, a new model called DL-COPAR [6] develops DLSI’s
idea on exploring the common bases of sub-dictionaries [8] by explicitly separating
the particularity (class-specific sub-dictionaries) and commonality (a common sub-
dictionary) in dictionary learning.

There are also some other approaches working in the direction of learning a dis-
criminative classification model using the sparse representation coefficients. Represen-
tative approaches include supervised dictionary learning [9] using the logistic regres-
sion model, discriminative K-SVD (D-KSVD) [10] with a linear regression model, and
the label consistent K-SVD (LC-KSVD) model [4] which adds one more linear regres-
sion term to D-KSVD to further enhance the label consistency within each class.

Taking into account the effectiveness of both directions, the work of Fisher discrim-
ination dictionary learning (FDDL) [5] explicitly combines discriminative dictionary
learning and coefficients based classification model learning, and uses both of them in
its two classification models as well.

The proposed DCR, however, integrates the key ideas behind all these three groups
and uses l2-norm regularization terms for efficiency while pursuing effectiveness and
comprehensiveness. Moreover, DCR has a novel classification model which coincides
well with its learning model. The model optimization with closed-form solutions for
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alternating steps and the comprehensiveness of experiments in this paper are also dif-
ferent from those in the literature.

It’s worth noticing that the work of Discriminative k-metrics [11] extends q-flats to
metrics and introduces discrimination, resulting in a similar formula with part of DCR.
However, its collaborative representation (CR) exists only in within-class metrics, while
DCR is an inter-class CR model. The work on structured sparsity [12] also has a CR-
like model, but it embeds GMM/MAP-EM for representation and uses PCA to generate
dictionary and regularize coefficients, which are much unlike DCR.

3 Discriminative Collaborative Representation

3.1 Sparse/Collaborative representation

Given a training dataset X = [X1, . . . , XL] ∈ Rd×n, where n denotes the total num-
ber of samples, d denotes their feature dimension, L is the number of classes, and
Xi,∀i ∈ {1, . . . , L} denotes the ni samples belonging to class i. Both sparse repre-
sentation and collaborative representation seeks a linear combination of all the training
samples X to best reconstruct an arbitrary test sample y ∈ Rd. And such a reconstruc-
tion is regularized by some norm of the reconstruction coefficients to make the solution
unique. It can be modeled by the following optimization problem:

α̂ = argmin
α

∥y −Xα∥22 +λ1∥α∥p, (1)

where λ1 is a trade-off parameter for balancing the reconstruction error and the squared
norm of α. In general, the lp-norm can be any feasible norm. Since l0-norm leads to a
combinatorial optimization problem which is hard to be solved efficiently, SRC chooses
the l1-norm which to some extent ensures the sparsity of α, coinciding with the belief
that the sparse coefficients have great discriminative ability. Differently, CRC takes the
l2-norm (actually the squared l2-norm is used for easier optimization) which cannot
make α sparse any more, but it leads to an efficient closed-form solution with good
classification performance [2] as well.

3.2 Dictionary learning for DCR

Reconstruction using the training data itself makes the performance of SRC and CRC
largely depend on the properties of the training data X . To alleviate such a dependance,
there is a research direction of learning a better dictionary D from X to replace it for the
reconstruction. Inspired by the existing dictionary learning (DL) approaches, we design
our dictionary learning model for DCR as:

⟨D∗,W ∗, T ∗, A∗⟩ = arg min
D,W,T,A

{
r (X,D,A) + λ

(
∥A∥2F + ∥D∥2F

)
+ γf (W,T,A)

}
,

(2)
where D ∈ Rd×K with K items is the learned dictionary from X (usually K ≤ n);
A ∈ RK×n denotes the reconstruction coefficients over D for all the n training samples;
W and T denote the learned parameters of the discriminative model f(W,T,A) for
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classification with A; r(X,D,A) is the discriminative reconstruction model defined
over D (called the discriminative fidelity in [5]); ∥ · ∥F denotes the Frobenius norm
which is a generalization of l2-norm from dealing with vectors to operating on matrices.
λ and γ are two unavoidable trade-off parameters, for which the discussion will be given
in section 4.

Most of the existing DL models can be covered by the above general model if we
replace the Frobenius norm with a sum of l0-norms or l1-norms (except some models do
not have the f(W,T,A) term). The differences of them mainly consist in their detailed
design of r(X,D,A), f(W,T,A) and the regularization of D, which largely influences
the performance and speed of the model. Different from existing models, we propose
to use the following formula for r(X,D,A) in our model:

r (X,D,A) = ∥X −DA∥2F +
L∑

i=1

∥∥∥Xi −DiA
i
i −D0A

0
i

∥∥∥2

F
+

L∑
i=1

L∑
j=1,j ̸=i

∥∥∥DiA
i
j

∥∥∥2

F
. (3)

In this formula, D = [D0, D1, . . . , DL] denotes the dictionary to be learned, where D0

is a common sub-dictionary shared by all the classes while Di with i ∈ {1, . . . , L}
stands for a class-specific sub-dictionary. Accordingly, Ai

j denotes the coefficients cor-
responding to the sub-dictionary Di for those samples from Xj (i.e. the columns of Ai

j

correspond to class j). When the physical meanings are concerned, the first term is the
global reconstruction error (ensuring that the whole dictionary D can well represent
X); the second term is the class-specific reconstruction error (forcing Di together with
D0 to be able to well represent Xi); and the third term is the confusion factor (restrict-
ing Di’s ability on reconstructing samples from any other classes rather than i). Please
note that the first term and the second term are not the same. The second term doesn’t
count Dj , ∀j ̸= i. Putting them together is to force D discriminative.

For f(W,T,A), we use the same discriminative model as the one for LC-KSVD [4]
(more precisely the LC-KSVD2 model in the original paper)4:

f (W,T,A) = 4 ∥Q− TA∥2F + ∥H −WA∥2F , (4)

where H = [h1, ...,hn] ∈ RL×n are label vectors for X with hi = [0, . . . , 0, 1, 0, . . . , 0]T

∈ RL indicating which class xi is belonging to, and Q = [q1, ...,qn] ∈ RK×n are ideal
sparse codes for X with qi = [0, . . . , 0, 1, . . . , 1, 0, . . . , 0]T ∈ RK in which only the
items corresponding to Dk is 1 when xi is belonging to class k. In fact, given the struc-
ture of D, Q can be directly derived from H . The discriminative model aims at learning
a linear mapping T which can map the coefficients A to the desired Q, while at the same
time learning a linear regression model W which can transfer A to its corresponding
label vectors. Therefore, W can be viewed as the model parameters of a linear classifier,
while T acts like a parter of W which has greater modeling ability (with more parame-
ters) than it. Such a design has been proved to be very effective in LC-KSVD, and it is
more efficient than the Fisher discriminant based discriminative model in FDDL.

4 We follow LC-KSVD on balancing the two parts with a factor of 4 for simplicity, though a
better factor may exist.
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3.3 Optimization

Like other DL models, the optimization can only be done by alteratively optimize model
parameters (D, T , and W ) and coefficients A until convergence.

Initialization D and A We simply utilize principle component analysis (PCA) to ini-
tialize D0 and Di, ∀i ∈ {1, . . . , L} with X and Xi, respectively. However, it is also
possible to initialize D with random numbers, which will only cost a few more opti-
mization iterations.

Unfortunately, there is no plausible way to initialize T and W without knowing
A, while initializing A also needs some existing T and W . Therefore, we choose to
discard f(W,T,A) at first, so that A can be initialized based only on an initial D. More
concretely, A can be computed in a class-by-class way thanks to the decomposition
ability of the Frobenius norm. In another word, for each i ∈ {1, . . . , L}, Ai can be
initialized independently as follows.

A∗
i = argmin

Ai

{
∥Xi −DAi∥2F +

∥∥∥Xi −DS0iS
T
0iAi

∥∥∥2

F
+

∥∥∥DS\0iS
T
\0iAi

∥∥∥2

F
+ λ ∥Ai∥2F

}
,

(5)
where

Si =

 O∑i−1
m=1 Km×Ki

IKi×Ki

O∑L
m=i+1 Km×Ki

 , ∀i ∈ {0, 1, . . . , L},

S0i = [S0, Si] ,
S\0i = [S1, · · · , Si−1, Si+1, · · · , SL] ,

(6)

with Ki, i ∈ {0, 1, . . . , L} denoting the dictionary size of Di. Here S0i is a matrix for
selecting D0 and Di, while S\0i is for discarding D0 and Di. O and I denote the zero
matrix and the identity matrix, respectively. The optimization problem of Equation 5
can be rewritten into a simpler form

A∗
i = argmin

Ai

{
∥Ri − ZiAi∥2F + λ ∥Ai∥2F

}
, (7)

where

Ri =

 Xi

Xi

Od×ni

 , Zi =

 D
DS0iS

T
0i

DS\0iS
T
\0i

 . (8)

Therefore, Ai has a computationally very efficient closed-form solution just like the
CRC model:

A∗
i =

(
ZT
i Zi + λ · I

)−1
ZT
i Ri. (9)

Optimizing D, T, and W when given A Once A is given, the term λ ∥A∥2F becomes a
constant, however, D is still impossible to be optimized as a whole because the objective
function in Equation 2 has two terms which are functions of sub-dictionaries Di, i ∈
{0, 1, . . . , L} but not the overall dictionary D. Therefore, we optimize Dis one-by-one,
assuming the others are fixed.
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First, for each class-specific sub-dictionary Di, i ∈ {1, . . . , L}, suppose all Dj , j ∈
{0, . . . , L}, j ̸= i are fixed, we can reform the objective function for optimizing Di as

D∗
i = argmin

Di

{
∥Ui −DiVi∥2F + λ ∥Di∥2F

}
, (10)

where

Ui =
[
X −D\iA

\i, (Xi −D0A
0
i ),Od×(n−ni)

]
, Vi =

[
Ai, Ai

i, A
i
\i

]
. (11)

In Equation 11, D\i denotes all the Dj , j ∈ {0, . . . , L}, j ̸= i together and A\i denotes
their corresponding coefficients (i.e. without Ai). Conceptually, “\i” means without
class i. Od×(n−ni) denotes a d × (n− ni) dimensional zero matrix, where ni, i ∈
{1, . . . , L} is the number of samples in class i and n =

∑L
i=1 ni. Equation 10 has a

closed-form solution
D∗

i = UiV
T
i

(
ViV

T
i + λ · I

)−1
. (12)

Then, for the common sub-dictionary D0, when Di, i ∈ {1, . . . , L} are all given,
the optimizing objective function for D0 can also be reformed as

D∗
0 = argmin

D0

{
∥U0 −D0V0∥2F + λ ∥D0∥2F

}
, (13)

where
U0 =

[
X −D\0A

\0, (X −D\0Â
\0)

]
, V0 =

[
A0, A0

]
, (14)

with

Â\0 =


A1

1 0 · · · 0
0 A2

2 · · · 0
...

...
. . .

...
0 0 · · · AL

L

 . (15)

Similarly, Equation 13 has a closed-form solution

D∗
0 = U0V

T
0

(
V0V

T
0 + λ · I

)−1
. (16)

After getting A and D, optimizing T becomes solving a simple linear regression
problem:

T ∗ = argmin
T

∥Q− TA∥2F , (17)

whose solution is T ∗ = QAT (AAT )−1. Similarly, W also has a closed-form solution
W ∗ = HAT (AAT )−1.

Note that optimizing Di depends on a given D\i, therefore, once Di is updated, it
should be used to update each Dj , j ̸= i in D\i. This is a chicken-and-egg problem, so a
straightforward solution is updating all the Dis iteratively until they are converged (i.e.
getting very small changes). However, since we are iterating between optimizing A and
updating D, T , and W , a converged D will soon been changed once A is recomputed.
Therefore, in our implementation, we ignored the iteration in D’s optimization, and
found that it still worked very well for our experiments.
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Optimizing A when given D, T, and W Similar to initializing A, when D, T , and
W are given, optimizing A is equivalent to optimizing Ai for each i ∈ {1, . . . , L}
independently as follows.

A∗
i = argmin

Ai

{
∥Xi −DAi∥2F +

∥∥Xi −DS0iS
T
0iAi

∥∥2

F
+

∥∥DS\0iS
T
\0iAi

∥∥2

F

+λ ∥Ai∥2F + γ
(
4 ∥Qi − TAi∥2F + ∥Hi −WAi∥2F

) }
, (18)

which is very much like Equation 5 except the last two additional terms, and it can
be rewritten into Equation 7 as well, leading to the same solution as Equation 9. The
differences are the values of Ri and Zi, which now contain two extra terms about T and
W as follows.

Ri =


Xi

Xi

Od×ni

2
√
γQi√
γHi

 , Zi =


D

DS0iS
T
0i

DS\0iS
T
\0i

2
√
γT√
γW

 . (19)

3.4 Classification model

After learning D, T , and W from training samples, we can use them for classifying an
input test sample y, or a set of test samples Y for set-based classification. Both tasks
will be verified in our experiments. For simplicity, we use Y to stand for both cases, i.e.,
Y can be a feature vector for single sample or a matrix whose columns are individual
samples belonging to the same set.

Unlike the classification models in the existing approaches, our classification model
for DCR directly coincides with its dictionary learning model. For each candidate class
i ∈ {1, . . . , L}, suppose Y belongs to class i, then we can compute Ai according to:

A∗
i = argmin

Ai

{
∥Y −DAi∥2F +

∥∥Y −DS0iS
T
0iAi

∥∥2

F
+

∥∥DS\0iS
T
\0iAi

∥∥2

F

+λ ∥Ai∥2F + γ
(
4 ∥Qi − TAi∥2F + ∥Hi −WAi∥2F

) }
, (20)

whose solution has exactly the same form as the one for Equation 18. The only change
needs to make is replacing Xi with Y . Therefore, we get a collaborative representation
error Ei(Y ) for class i:

Ei(Y ) = ∥Y −DA∗
i ∥

2
F +

∥∥Y −DS0iS
T
0iA

∗
i

∥∥2
F
+

∥∥∥DS\0iS
T
\0iA

∗
i

∥∥∥2
F

+ λ ∥A∗
i ∥

2
F + γ

(
4 ∥Qi − TA∗

i ∥
2
F + ∥Hi −WA∗

i ∥
2
F

)
. (21)

Then Y is classified by
C (Y ) = argmin

i
Ei (Y ) . (22)

We do have tried other existing classification models like the linear projection model
for LC-KSVD and found that they are not as good as the proposed classification model,
which fits the learning model better and looks more reasonable. Detailed comparison is
omitted in this paper due to the space limits.
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Table 1. Computational complexity of DCR. d,K,L, and n refer to the feature dimensionality,
the size of the dictionary, the number of classes and the number of samples, respectively.

Training (Dictionary Learning)

Operation Complexity

Initializing A O
(
dK2L + K3L + dKn

)
Optimizing D O

(
dKLn + n

∑L
i=0 K2

i +
∑L

i=0 K3
i

)
• Computing Ui O

(
dn

∑
j ̸=i Kj + dK0ni

)
• Computing D∗

i O
(
dKin + n

∑L
i=1 K2

i +
∑L

i=1 K3
i

)
• Computing U0&D∗

0 O
(
dK0n + nK2

0 + K3
0

)
Optimizing T O

(
K2n + K3

)
Optimizing W O

(
KLn + K2n + K3+

)
Optimizing A O ((d + K + L)K(KL + n))

• Computing Zi&A∗
i O ((d + K + L)K(K + ni))

Sub-total O
(
(K + n)dKL + K3L + K2n

)
Testing (Classifying) each sample

Operation Complexity

Optimizing A O ((d + K + L)KL)

Computing Ei(Y ), ∀i O ((d + K + L)KL)

Classification O (L)

Sub-total O ((d + K + L)KL)

3.5 Convergence and computational complexity

We present the computational complexity for each component/operation of our dictio-
nary learning model and the classification model in Table 1. Since the components of
our models only contain simple matrix operations, these complexity functions can be
easily verified by checking the corresponding equations. Note that we have used the
assumption L ≪ K, which is generally true, for simplifying some of them when it
is necessary. It has been proved that alternating optimization (AO) globally converges
for iteration sequences initialized at arbitrary points and it is locally, q-linearly (faster
than linearly) convergent to any local minimizer that satisfies some mild assumptions
[13], so the AO algorithms can usually converge very quickly. In our case, DCR always
converges within 3 to 8 iterations in all the experiments to be presented.5 Therefore, the
sub-total complexity listed in the training stage, which covers the initialization and a
single iteration, can also stand for the complexity of the whole alternative optimization
process. It can be seen that DCR scales less than linearly with d, L, and n, but nearly
proportionally to K3. Therefore, when the dictionary size is fixed/predetermined, it
scales well with the dimensionality of the data and the number of samples. In the testing
stage, classifying a single sample has a reasonable complexity. Note that it is benefited
from the fact that

(
ZT
i Zi + λ · I

)−1
ZT
i can be pre-computed using the learned model.

As it will be shown in the next section, DCR has a significantly more efficient learning
model than other related dictionary learning methods, while its classification model is
comparable to the best of them in efficiency.

5 Please refer to the supplementary material for more discussions and experimental results.
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4 Experiments on real-world applications

We try DCR on solving various real-world classification problems including face recog-
nition in controlled laboratory environments, uncontrolled person re-identification in
a real airport surveillance scenario, texture classification with great scale, viewpoint,
and illumination changes, and fine-grained object categorization for differentiating leaf
species and food subcategories. For each of these four types of classification problems,
we choose two different and representative benchmark datasets for evaluating the per-
formance of DCR, comparing with CRC, SRC, and other related dictionary learning
models including FDDL, LC-KSVD, and DL-COPAR. We used the version of SRC
embedded in the FDDL code, and implemented CRC by ourselves. Codes for all the
other methods were got from their authors. State-of-the-art results on specific datasets
from other unrelated methods are also listed for reference. Whenever applicable, we
conduct 10 times random training and test data sampling for result averaging.

For a clear overview and comparison of all the experiments and their corresponding
results, we briefly introduce each classification problem and the concrete tasks, whilst
having the dataset statistics listed together with the classification performance in uni-
form tables. Representative samples images are given to those less well-known datasets
for a better understanding. To be brief and clear, the analysis and discussion of the
results is stated in a separate subsection after the individual subsections.

4.1 Experimental settings

The same features and sub-dictionary sizes (for DL models only) have been used for all
these models to ensure a relatively fair comparison. Though it is possible that different
models may favor different dictionary size settings, it is unaffordable to perform a brute-
force best setting search for each of them on every dataset due to its high computational
cost. Concretely, we had the sub-dictionary sizes (K0 and Ki, i ∈ {1, . . . , L}) chosen as
follows: K0 = 5 and Ki = 15 for the Extended Yale B dataset; K0 = 3 and Ki = 6 for
the AR dataset; K0 = 10 and Ki = 23 for the iLIDS-MA dataset; K0 = 4 and Ki = 8
for the iLIDS-AA dataset; K0 = 2 and Ki = 10 for the KTH-TIPS dataset; K0 = 5
and Ki = 15 for the CUReT dataset; K0 = 3 and Ki = 10 for the Swedish Leaf
dataset; and K0 = 3 and Ki = 6 for the PFID Food dataset. For the comparisons with
the ScatNet features on texture classification datasets, we have K0 = 2 and Ki equal to
the number of training samples per class for every setting. For all our experiments, we
used the same trade-off parameters for DCR: λ = 1.0× 10−4 and γ = 2.5× 10−7. For
the other methods, we had the following setting for their trade-off parameters (fixed as
well): λ = 1.0×10−4 for SRC and CRC; λ1 = 1.0×10−4, λ2 = 5.0×10−3, γ = 0.001
and w = 0.05 for FDDL; α = 1.0× 10−6, and β = 2.5× 10−7 for LC-KSVD. These
parameters were chosen by extensive but not brute-force testing for making the results
as good as possible for all the methods, while at the same time made to be consistent
across them. It’s worth mentioning that DCR’s performance is stable w.r.t. a large range
of λ (from 10−8 to 10−2) and γ (from 0 to 10−4). Details on how the performances
change with these parameters are omitted due to the space limit. The other parameters
(if exist) for the methods compared with were kept as they are in their original codes.
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Table 2. The benchmark datasets used for face recognition, their statistics, and the average recog-
nition accuracy for each compared method. The best results are in bold, while those worth men-
tioning are marked in italic.

Statistics Performance of Methods (%)

Dataset Samples Classes Training Samples (per Class) Test Samples (per Class) SRC CRC FDDL LC-KSVD DL-COPAR DCR(NS) (NC) (NTrS(/NC)) (NTsS(/NC)) [1] [2] [5] [4] [6]
Ext. Yale B 2414 38 half (∼ 32) half (∼ 32) 95.1 97.6 96.8 94.4 92.8 98.2
AR 1400 100 700 (7) 700 (7) 89.8 91.9 91.7 67.7 69.4 93.4

4.2 Experiment details

Controlled face recognition Face recognition, more specifically, controlled face recog-
nition in laboratory environments, has been tested on by almost every sparse/collaborative
representation based model. We follow such a tradition and choose two widely-used
benchmark datasets for our experiments: the Extended Yale B [14] dataset and the AR
[15] dataset. The former one contains illumination and facial expression variations,
while the later covers one more variation – disguises changes. The AR dataset used
here is the one mentioned in [1] and [5], which is a subset of the original dataset. We
use the same 504-dimensional feature representation (generated by random matrix pro-
jection) as the one adopted in [4] for Extended Yale B dataset, and the 300-dimensional
Eigenfaces for AR dataset. The statistics of the experimental data and the final recogni-
tion rates are presented in Table 2.

Uncontrolled person re-identification Person re-identification is a problem of iden-
tifying people again when they travel across non-overlapping cameras or reappear in
the view of the same camera after disappearing for some time. Though any possible
cues can be used for solving it, body appearance is mostly concerned. Since almost all
the benchmark datasets were built from data captured in real scenarios without specific
environmental settings, it is a good uncontrolled recognition problem which is much
unlike the above face recognition problem.

In this paper, we work on the two newly built datasets “iLIDS-MA” and “iLIDS-
AA” [16] collected from the i-LIDS video surveillance data captured at an airport. This
data was originally released by the Home Office of UK. Both of them contain multiple
images for each human individual captured by two non-overlapping cameras (camera
1 and camera 3 in their original setting), and there are large viewpoint changes. The
iLIDS-MA dataset has 40 persons with exactly 46 manually cropped images per cam-
era for each person, while the iLIDS-AA dataset contains as many as 100 individuals
with totally 10754 images (each individual has 21 to 243 images) collected by an au-
tomatic tracking algorithm (thus localization errors and unequal class sizes may exist).
For result averaging, we random sample certain amount of images per person (23 for
iLIDS-MA, and up to 46 for iLIDS-AA) from each camera for training and test, re-
spectively. Some randomly chosen samples are shown in Figure 1. We use the same
400-dimensional color and texture histograms based features as adopted in [17] for all
the methods. Following [18], we perform multiple-shot re-identification (i.e., set-based
classification). Therefore, the set-based classification model of DCR is used, while the
simple minimum point-wise distance between two sets is adopted for other methods
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Fig. 1. Some randomly chosen image examples of iLIDS-MA and iLIDS-AA datasets.

Table 3. The benchmark datasets used for person re-identification, their statistics, and the average
recognition rates (at rank 10%) of compared methods. The best results are in bold, while those
worth mentioning are marked in italic.

Statistics Performance of Methods (%)

Dataset NS NC NTrS(/NC) NTsS(/NC) CSA SRC CRC FDDL LC-KSVD DL-COPAR DCR[18]
iLIDS-MA 3680 40 920 (23) 920 (23) 80.5 77.0 72.3 82.3 82.3 85.3 83.3
iLIDS-AA ≤9200 100 ≤4600 (≤46) ≤4600 (≤46) 51.5 77.9 64.2 70.0 73.7 66.6 80.3

except CSA [18]. Since personal re-identification is commonly treated as a ranking
problem and we expect to see the correct match in the top-ranked few candidates, we
report the cumulative recognition rate at rank top 10% instead of the rank-1 recognition
accuracy. The results are shown in Table 3.

Texture classification Unlike other classification tasks, texture classification is useful
for verifying the effectiveness of a classification model on working with the texture cue
only. Two representative benchmark datasets: KTH-TIPS with 10 classes and CUReT
with 61 classes, are chosen for our experiments because they both have enough samples
for each class (satisfying SRC’s one precondition). However, these two datasets share
the same difficulty of having great within-class variations including illumination, view-
point and scale changes. We use the PRI-CoLBP0 feature proposed in [19] as the raw
feature representation which is designed to be somewhat robust to these variations. By
doing so, it is more meaningful to compare our results with the state-of-the-art shown in
[19], which was generated by Kernel SVM (KSVM) with a χ2 kernel. The experimental
results are listed in Table 4.

Fine-grained object categorization Fine-grained object categorization concerns the
classification of sub-categories, thus it lies in the continuum between basic level cate-
gorization and identification of individuals. Though it has not been as popular as those
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Table 4. The benchmark datasets used for texture classification, their statistics, and the average
recognition accuracy for each compared method. The best results are in bold, while those worth
mentioning are marked in italic.

Statistics Performance of Methods (%)

Dataset NS NC NTrS NTsS Zhang Caputo KSVM SVM SRC CRC FDDL LC-KSVD DL-COPAR DCR(/NC) (/NC) et al.[20] et al.[21] [19]
KTH-TIPS 810 10 400 (40) 410 (41) 96.1 94.8 98.3 86.1 95.7 97.1 69.9 88.5 58.5 98.7
CUReT 5612 61 2806 (46) 2806 (46) 95.3 98.5 98.6 82.9 82.4 93.3 4.9 93.0 10.3 98.9

Swedish Leaf Food

Fig. 2. Some representative samples from the Swedish leaf dataset and the Pittsburgh Food Image
Dataset, respectively.

two extremes, recently its importance has been rediscovered by the community. We
experiment on two specific tasks: identifying leaf species in the popular Swedish leaf
dataset, and classifying fast food sub-categories in the subset of 61 food classes from
the Pittsburgh Food Image Dataset (PFID) [23]. These two tasks covers the problem of
using mainly shape cue and the one which is rich of color, texture and shape informa-
tion. The PFID dataset is more challenging due to the large within-class variations and
possibly different data distributions in the training and test subsets. More concretely,
there are 3 different instances in the same food sub-category, which were bought from
different chain stores on different days, and each instance has six images taken from
different viewpoints. In our experiment, two instances are randomly chosen for training
while the other is left for testing, so we had 3 trials for result averaging. Represen-
tative samples from these two datasets are shown in Figure 2, and the categorization
accuracies can be found in Table 5.

4.3 Result analysis and discussion

All the results shown above clearly demonstrate the effectiveness and robustness of
DCR. On seven of the eight datasets, DCR performs the best, exceeding all related
models and those methods which represent the state-of-the-art. For only iLIDS-MA
dataset, its performance is slightly lower than DL-COPAR, but still higher than all the
others. The high scores on texture datasets and the leaf dataset are mainly because the
adopted PRI-CoLBP0 features themselves are already very effective (see KSVM’s or
SVM’s performance) and there are plenty of samples per class. Though we have tried
our best to use the original codes from the authors for the existing methods (like SRC),
there may be slight differences between the results reported in the literature and the
ones shown here, which may be due to the usage of different features, different data
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Table 5. The benchmark datasets used for fine-grained object categorization, their statistics, and
the average recognition accuracy for each compared method. The best results are in bold, while
those worth mentioning are marked in italic.

Statistics Performance of Methods (%)

Dataset NS NC NTrS NTsS Spatial Yang et al. SVM SRC CRC FDDL LC-KSVD DL-COPAR DCR(/NC) (/NC) PACT [22] [23]
Swedish Leaf 1125 15 375 (25) 750 (50) 97.9 N/A 95.0 95.8 99.1 92.2 99.0 43.7 99.2
Food 1098 61 732 (12) 366 (6) N/A 28.2 18.4 31.1 34.9 17.5 22.0 16.7 37.3

Table 6. The benchmark datasets used for texture classification, their statistics, and the average
recognition accuracy for each compared method. The best results are in bold, while those worth
mentioning are marked in italic.

Statistics Performance of Methods (%)

Dataset NS NC NTrS NTsS KSVM SRC CRC LC-KSVD ScatNet DCR(/NC) (/NC) [19] [24]
KTH-TIPS 5 810 10 50 (5) 760 (76) 64.4 19.9 35.7 56.6 70.4 75.0
KTH-TIPS 20 810 10 200 (20) 610 (61) 83.3 22.5 50.3 60.4 94.39 94.41
KTH-TIPS 40 810 10 400 (40) 410 (41) 88.6 24.7 54.1 73.6 97.7 97.8
UIUC 5 1000 25 125 (5) 815 (35) 33.6 21.3 30.0 47.5 49.5 57.6
UIUC 10 1000 25 250 (10) 750 (30) 30.2 24.0 34.8 52.0 60.8 71.4
UIUC 20 1000 25 500 (20) 500 (20) 28.5 27.6 41.8 61.6 74.6 78.4

caused by random sampling, and possibly slightly different parameter settings. Note
that FDDL and DL-COPAR seem to significantly over-fit the training data on the last
four datasets, which is even worse than using SRC itself.

Though we’ve already shown some state-of-the-art results from unrelated methods,
there are definitely uncovered ones, especially when different features are used. In order
to show the superiority of proposed classifier DCR, we take texture classification as an
example to show how it performs comparing with those strongest competitors using the
same newly proposed feature ScatNet [24]. We use the latest code of ScatNet from its
authors, and have the method proposed in [24] (ScatNet with a linear SVM classifier)
included for comparison as well (simply denoted by “ScatNet”). Since the KTH-TIPS
dataset is enhanced from CUReT, we use another dataset UIUC instead of CUReT for
the comparison, and set different sample sizes (number of samples per class) to show
how this factor influence the performances. The results presented in Table 6 demonstrate
that DCR consistently performs better than that of ScatNet and other methods which are
most competitive in former experiments, especially in the small sample size cases.

In general, there are two important conclusions which could be easily derived from
the details of the results.

1. DCR learns a good dictionary for collaborative representation. In all the exper-
iments, dictionary learning in DCR consistently and greatly improves the perfor-
mance of collaborative representation (compared with CRC).

2. DCR appears less over-fitting and more effective than other dictionary learning
models in our experiments, which is very significant, especially on those datasets
with few samples per class (such as AR, Food, KTH-TIPS 5, UIUC 5, and UIUC 10)
and large within-class variations (such as iLIDS-AA, KTH-TIPS, CUReT and Food).
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Table 7. Computational cost comparison with all the related methods on all concerned classifica-
tion tasks. The best results are in bold, and the best results for dictionary learning based methods
are underlined.

Training Time (ms/sample) Test Time (ms/sample)
Dataset SRC CRC FDDL LC-KSVD DL-COPAR DCR SRC CRC FDDL LC-KSVD DL-COPAR DCR
Extended Yale B 0 0 2386 116.6 1274 57.6 3093 16.9 1257 0.56 18.9 9.7
iLIDS-AA 0 0 134715 6059 539.4 124.2 8420 9.8 10349 21.1 48.7 16.6
KTH-TIPS 0 0 1138 265.2 3154 25.0 2830 0.18 2371 4.4 6.9 8.8
Swedish Leaf 0 0 1753 219.6 1806 346.1 4149 0.77 3470 3.2 9.2 7.8

4.4 Computational cost

We choose a representative dataset for each problem to compare the actual training/test
time for all the adopted sparse/collaborative representation based models. The results
are averaged over the 10 trials if applicable, and we report them in the “per sample”
manner to eliminate the influence of dataset size. All the methods compared are im-
plemented in Matlab and ran on a 2.67 GHz machine with 20GB memory (more than
actually needed). The results listed in Table 7 show that the learning model of DCR is
generally more efficient than those of other dictionary learning methods (especially its
analogues FDDL and DL-COPAR). Though LC-KSVD is very fast in the testing stage
as it needs only a linear projection, the test time of DCR is comparable to that of LC-
KSVD. This is unlike FDDL which needs expensive optimization even at the test stage.
We can verify the correctness of the theoretical complexity (shown in Table 1) by com-
paring it with the actual computational time. Take “Extended Yale B” as an example,
the theoretical complexity for training is O(2.72× 1010) while the actual training time
is about 6.8 times of 2.72× 1010, showing that they match each other very well.

5 Conclusions

We have proposed a novel dictionary learning model DCR for classification, which to
the best of our knowledge is the first one for the l2-norm based collaborative represen-
tation. Extensive experimental results on 9 benchmark datasets for 4 types of tasks have
shown that DCR is more effective and less over-fitting than the state-of-the-art. Its per-
formance is also superior to the latest results from some unrelated methods. Moreover,
DCR learns its dictionary faster than the other related dictionary learning models due to
the closed-form solutions for each sub-problem in the alternative optimization. Future
work includes a comparison of the concerned models on how their performances change
when the trade-off parameters ar e tuned, which may reveal new interesting findings on
the effectiveness of each component and the models’ sensitivity to these parameters.
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